
LTS using Decision Forest of Regression Trees and Neural Networks

Tanuja Sarkar, Sachin Joshi, Sathish Chandra Pammi1
Kishore Prahallad2

1International Institute of Information Technology, Hyderabad, India.
2Language Technologies Institute, Carnegie Mellon University, USA.

tanuja@students.iiit.ac.in, sachin sj@students.iiit.net,

sathishp@students.iiit.net, skishore@cs.cmu.edu

Abstract
Letter-to-sound (LTS) rules play a vital role in building a speech
synthesis system. In this paper, we apply various Machine
Learning approaches like Classification and Regression Trees
(CART), Decision Forest, forest of Artificial Neural Network
(ANN) and Auto Associative Neural Networks (AANN) for
LTS rules. We used these techniques mainly for Schwa dele-
tion in Hindi. We empirically show that the LTS using Decision
Forest and Forest of ANNs outperforms the previous CART and
normal ANN approaches respectively, and the non discrimina-
tive learning technique of AANN could not capture the LTS
rules as efficiently as discriminative techniques. We explore
use of syllabic features, namely, syllabic structure, onset of the
syllable, number of syllables and place of Schwa along with pri-
mary contextual features. The results showed that use of these
features leads to good performance. The Decision Forest and
forest of ANNs approaches yielded phone accuracy of 92.86%
and 93.18% respectively using the newly incorporated features
for Hindi LTS.
Index Terms:letter, decision trees, decision forest, Artificial
Neural Network, Auto Associative, CART, features, Schwa

1. Introduction
Speech synthesizers [1], for a natural language, comprises of
two kinds of processing modules, text processing and wave gen-
eration. In this paper, we have focused on , Letter-to-Sound
rules (LTS) module, which is an important part of text process-
ing module in speech synthesizer. Our work deals with LTS
for Hindi and can also be applied to all other Indian languages,
since they are phonetically similar to each other. LTS mod-
ule maps a particular letter of the language to its corresponding
sound representation, given a definite context.

An akshara in Indian language scripts is a syllable and is
typically of the form: C∗V C∗, where C is a consonant and V is
a vowel. The subunits of akshara which are used to represent
these consonants and vowels are called letters. There is a fairly
good correspondence between what is written and what is spo-
ken. Indic languages are syllabic in nature, with an important
concept of the inherent vowel Schwa (/a/). Unless otherwise
indicated, each consonant is typically followed by this vowel
sound /a/. Indian languages require rules for letter to sound
mapping, which varies from one language to another. The rules
can be either written manually or generated by a machine learn-
ing algorithm. Quite often manually written rules give quite fair
results [2]. In some cases where there are more exceptions to
a rule, the results of the hand-written rules are poor [3]. It has
been generally observed that data-driven approaches give better

results than the rule based, for such languages [4]. Moreover, in
rule-based systems, a set of hand-written rules is provided with
the input data for each language. For these systems, it is nec-
essary to provide a separate rule-set for every new language. It
may be possible that the rules in the rule-set may not be written
with full precision. This makes LTS module less robust.

Problem of Schwa Deletion: There are various challenges
involved in building the LTS module for Indian languages. Most
of the Indian languages, face the problem of pronunciation of
the inherent vowel called Schwa. In a word, the Schwa is either
deleted, or not deleted or replaced depending on the context.
These contextual rules are either handwritten for rule-based sys-
tem or generated by the decision trees for data-driven systems.
For example, the following words written in ITrans-3 [5] nota-
tion describes the Schwa in Hindi,
/matagandãnaa/ — /mat#gandãnaa/ : Here ’#’ represents the
deleted Schwa.
/aaveidanapatroon’/ —- /aaveidan#patroon’/. To illustrate how
improper Schwa deletion can render the speech incomprehensi-
ble, compare the word “dhad-akanein’́’(pronounced as “dhad-
kanein’́’) [noun. heart-beats] with “dhad-akanei”(pronounced
as “dhad-aknei”) [verb. To beat (heart)], where Schwa follow-
ing ’k’ is deleted. Without any Schwa deletion, not only will the
two words sound very unnatural, but it will also be extremely
difficult for the listener to distinguish between the two.

Until recently , for Indian languages, most of the LTS mod-
ules were modelled using rule-based approach. It has been ob-
served that machine learning (ML) can be used to built robust
LTS modules. In this paper, we propose to apply ML concepts
like CART, Decision Forests, ANN and AANN to LTS prob-
lem in Indian languages. Here, we have tried to analyse and
compare performances of these machine learning techniques to
come up with better system. The rest of the paper is organized
as follows. Section 2 discusses the previous approaches for
building letter-to-sound module. Section 3 describes building
the database for the LTS module and feature extraction. Section
4 talks about LTS using CART. Section 5 discusses the LTS sys-
tem build with AANN and Decision Forest. Section 6 analyses
the results of the various experiments with various data-driven
approaches with Hindi language. Section 7 concludes the whole
paper with basic points highlighted briefly.

2. Related Work

LTS module is generally modelled using rule-based and statis-
tical methods. Both the methods have some advantages and
disadvantages which make them usable in some specific areas.

Table 1: Detailed description of the Hindi Database
Number of syllables Number of words

1 160
2 2872
3 6987
4 5391

More than 5 3496
18906

Rule-based: Traditional models for LTS rules have been
built using rule-based approaches. The main advantage of these
systems is that they do not require a huge training corpus.
Rather a small list of rules is provided as the core of the sys-
tem. Rule based approaches for LTS in Indian languages were
reported in [2]. This paper discussed the problem of Schwa
in the context of morpheme boundary. But rule-based systems
lack robustness as it is difficult to write complex rules appli-
cable to all conditions. For a new language, a new rule-based
system is to be built with a new set of learning-rules, which is
time comsuming.

Statistical Methods: To improve the robustness of the rule-
based system, statistical systems were introduced [6],[7]. Vari-
ous statistical techniques like decision trees, neural networks [8]
etc. were experimented on. Paper [9], discusses the problems
of building a LTS module, for English, using CART. Letter to
sound was also built using ANN [10]. Selection of proper fea-
tures plays an important role in building a statistical LTS system
[11]. Generally the statistical models depend on the features
that can be easily extracted from the data.

3. Data Preparation
The text corpus collected to build Hindi TTS, contains 12,230
sentences, which have 18,906 unique words. These sentences
were recorded by professional native Hindi speaker. Corre-
sponding pronunciation for all these unique words were writ-
ten by native Hindi speaker with the help of recorded speech
utterances. Data corpus used for LTS was statically balanced
as shown in Table 1. It can be observed from the above table
that, database for Hindi contains 18,906 unique words. Among
these, 3,782 (20%) words were selected by sampling one word
in every 5 words, for testing and remaining 15,124 words used
for training.

Feature extraction is fundamental to any machine learning
technique. Features contain the information for uniquely classi-
fying a given unit. The experiments were done with incremen-
tal procedure of widening the feature vector length. Primarily
previous and next context letters were chosen as basic features.
It is well known fact that Schwa deletion in Indian languages
is affected by the position of the Schwa in the word. Schwa
in the first syllable is always retained regardless of the contex-
tual features. Schwa deletion in other syllables of a word varies
depending on the context. The structure of Schwa containing
syllable like CV, CCV or CVC is also a promising feature for
Indian languages. According to [2], for any conjugate syllable
or cluster of consonants that ends in y, r, l or v, the Schwa fol-
lowing the cluster is retained. So other features like syllable
position, structure, onset etc. were added to primary features.
Here we exemplify the types of feature sets with example of
fourth phoneme (Schwa) occuring in word matagand−anaa.

• 2 Level contextual features like previous and next letters:
a t g a a

• 3 Level contextual features like previous and next letters:
a t g a a m nd−

• 4 Level contextual features like previous and next letters:
a t g a a m nd− $ a

• 4 Level contextual + syllable structure: a t g a a m nd−
$ a CVC

• 4 Level contextual + syllable structure + onset of the cur-
rent syllable: a t g a a m nd− $ a CVC m

• 4 Level contextual + syllable structure + onset of the cur-
rent syllable + place of Schwa (first, middle or end syl-
lable): a t g a a m nd− $ a CVC m 1

• 4 Level contextual + syllable structure + onset of the cur-
rent syllable + place of Schwa + number of syllables in
the word: a t g a a m nd− $ a CVC m 1 3

After feature extraction, training data consist of 22973 vectors
and test data has 9845 feature vectors. This data was used for
the experiments with CART and AANN.

4. LTS Using CART
CART [6],[7] is a data driven technique based on successive
spliting of nodes into relatively homogeneous child nodes. The
basic CART building algorithm is a greedy algorithm in that it
chooses the locally best discriminatory feature at each stage in
the process. The stop parameter specifies the minimum number
of samples necessary in the training set before a decision of
split is made. Normally the smaller the stop value the more
over-trained the models may become. Determining the optimal
stop value for Hindi LTS is the key issue. We performed various
experiments to conclude the suitable stop value.

5. LTS Using Artificial Neural Networks
Artificial Neural Networks is an information processing
paradigm inspired by biological Nervous System. ANN con-
tains large number of interconnected units called Neurons work-
ing in unison which make them a robust technique [12].

Input Output Representation: Input data normalization is
key factor which governs performance of ANN to large extent.
We found that ANNs work best with binary input values. So
all the feature vectors were represented in binary string format.
The 0’s in binary strings were represented by -1 to make the
inputs perfectly normalized. The output of ANN was only one
value, 1 for Schwa deletion and -1 for retaining it.

Network Parameters and Training: We used three layered
feed forward ANN and tested it for multiple configurations.
Number of neurons in hidden layer is a key parameter to be
determined. We found that number of hidden layer Neurons
being equal to number of inputs is the optimal configuration.
The activation function of hidden and output layer neurons was
tangent sigmoid. Network was trained using back propagation
algorithm with learning rate of 0.0001. It was trained for 100
iterations.

Decision Forest: A decision forest is a set of several deci-
sion trees [13]. These trees can be formed by various methods
or by single method, but with different parameters. The build-
ing procedure uses different sub-samples of observations having
different characteristics over one and the same phenomenon.
Such many-sided consideration of a problem, as a rule, gives
the improvement of quality of forecasting and a better under-
standing of laws of the researched phenomenon. The decision

forest algorithm uses a stop value of 1 while building the in-
dividual decision trees. In this work, we have used concept of
”Bagging” [14] to build decision forest of total 11 trees and used
voting scheme to predict output.

Bagging: Bagging (Bootstrap AGGregatING) produces
replications of the training set by sampling with replacement.
Each replication of the training set has the same size as the orig-
inal set, but some examples can appear more than once while
others do not appear at all. Bagging should only be used if the
learning machine is unstable. Bagging improves the estimate if
the learning algorithm is unstable and reduces the variance of
predictions without changing the bias. We created total 11 bags
of data.

Voting Scheme: Once the decision forest is built, the mem-
ber trees are then used with the test data set for predicting the
output of each of the vectors of the test set. Then the final output
is chosen based on voting strategy, which will weigh the most
popular output from the set of outputs. Given the several out-
puts, a weightage-by-count (where weight of the output value
is number of trees which have output that value) method is em-
ployed to assign weightage to each output. Then the output with
the highest weightage is recorded as the final output.

5.1. Forest of ANN

Applying the same concept of Bagging, the data sets were cre-
ated and 11 ANNs were trained on these data sets. The learning
rate and architecture of all networks was same. Weightage-by-
count method was employed in voting scheme to predict exact
outputs.

5.2. LTS Using AANN

Unlike above all methods, Auto Associative Neural Network is
a novel non- discriminative ML technique in which outputs are
same as inputs. Nonlinear Autoassociators perform pattern au-
toassociation of clustered regions. They have ability to capture
the data distribution in multidimensional feature space. They
are successfully used for speaker verification and speech recog-
nition tasks [15]. We tested AANN for their performance on
LTS rules.

Training AANNs: The training data was segregated in two
data sets. In first one the inherent vowel ’Schwa’ was supressed.
In second one it was retained. All the features were used for this
experiment. Two different neural networks with same input out-
put dimensionality were trained on this data. The architecture
of these networks was 120 L 120 N 120 N. Where L stands for
linear activation function and N for nonlinear tangent sigmoidal
activation function. They were trained for 100 iterations each
with learning rate of 0.0001.

Testing AANNs: Each test vector was fed to each of these
2 neural networks. Then the euclidean distance between input
and output was calculated. The network which gives smaller
euclidean distance determines the class of that training vector.

6. Experimental Analysis & Results
We carried out the experimental comparison of various machine
leraning techniques for LTS rules. Here we study the forest
approaches on CART and ANNs and show how the forest ap-
proach is more robust as compared to normal ML approaches
of decision tree and ANNs. Then we also show, the effect of
adding syllabic features to original contextual features, on per-
formance of forest based techniques.

Table 2: Experiments on Hindi with CART, Decision Forest and
Forest of AAN

Context- CART (Stop Value) Decision- Forest
Level Forest of ANN

1 5 10
2L 89.59% 89.76% 89.20% 90.67% 92.14%
3L 90.47% 90.44% 90.63% 91.87% 92.37%
4L 91.09% 91.63% 91.54% 92.19% 92.92%

Table 3: Subjective Evaluations
Test Without LTS With LTS Both Similar

AB-Test 7 / 40 27 / 40 6 / 40
MOS 3.4 3.8 -

6.1. Experiments With Contextual Features

We experimented with different levels of contextual features
like 2, 3 and 4 (2L, 3L and 4L) using CART, ANN, Decision
Forest and Forest of ANNs algorithms respectively, to know
which of these levels contribute more to LTS. Results in the
Table-2 show that 4-level contextual features gave the best per-
formance.

6.2. Experiments with CART and ANN

Various stop values for CART were tried for optimal perfor-
mance. Table 2 shows that stop value of 5 performed bet-
ter. Best performance of CART was 91.63% The ANNs show
slightly better performance than CART of 92.71%. Because of
their highly connected nature, it seems that ANNs outperform
CART.

6.3. Experiments with Decision Forest and Forest of ANNs

The results in Table 2 also indicate that Forest techniques al-
ways performs better than normal CART and ANN. The 4-level
contextual feature was given more importance, as it gives better
performance than 2 and 3-level contextual features. The per-
formance of Decision Forest and ANN Forest was observed to
be 92.19% and 92.92% respectively. Although reasons for the
better performance of Decision Forest was explained in [14],
to prove this statistically, we conducted another experiment by
building separate models of CART and Decision Forest with
partitioned training data like 10, 20, 30.. 100% of training data
and evaluated these models with test data. The Fig 1 shows
comparison between DF and CART algorithms. From the Fig
1, it is observed that increasing the training data leads to decline
in CART performance because of over-fitting. While data over-
fitting is automatically nullified in Decision forest because of
it’s inherent multiplicity. So it always gives better performance.
The same is true for Forest of ANNs.

6.4. Experiments with Syllabic Features

Indian Languages have generated from Brahmi scripts and these
languages are syllabic in nature. So, syllabic features like Syl-
labic structure, Schwa Position, Onset of syllable and Number
of Syllables in that word contribute to improve the performance.
We have tested the performance of Schwa deletion by adding
syllabic features to contextual feature set. Table 4 shows im-
provement in performance using contextual and syllabic fea-
tures.

Ten Hindi sentences were synthesized with and without ap-

Figure 1: Performance of CART (Stop values - 1 and 10) and
Decision Forest (DF) with variable training data

Table 4: Performance of Hindi LTS with Contextual and Syl-
labic features

Features Used Phone-Accuracy Word-Accuracy
Decision Forest 92.19% 86.25%

with Contextual Features
Decision Forest 92.86% 87.25%

with Contextual+Syllabic Features
ANN Forest 92.92% 88.10%

with Contextual Features
ANN Forest 93.18% 88.67%

with Contextual+Syllabic Features

plying LTS rules using Forest of AAN approach. Table 3 shows
subjective evaluation using MOS (score between 1 (worst) to
5 (best)) and AB-Test (choice between two instances of same
sentence) done by four subjects.

6.5. Experiments on AANN

Since contextual and syllabic feautures together proved to be
the best in earlier experiments, we tested the same data on
AANN. They could achieve performance of 86.37%. The fail-
ure of AANN to perform at par with other techniques points out
the important fact that, LTS rules do not form limited number
prominent clusters in input feature space. Because these rules
are complex with many exceptions, they make input space very
sparsely distributed with tiny clusters.

6.6. Comparison with Rule based system

State-of-the-art rule based algorithm for Hindi LTS is given in
[2] by M. Choudhury. To compare our results with that algo-
rithm, we used the same algorithm without morphological an-
alyzer on our test data set, and observed the performance to be
88.17%. Table-5 shows the comparisons for Rule based system
and Decision Forest System.

7. Conclusion
In this paper, we compared various ML techniques with various
contextual features. First we experimented with various levels
of contextual features like 2, 3 and 4 level using CART, ANN,
Decision Forest and ANN Forest and observed that 4 level con-
textual features were better, compared to other levels used. We
also evaluated performance of CART with different stop values.

Table 5: Performance of Hindi LTS with Rule-based algorithm,
CART, Decision Forest and Forest of ANN

System Phone Accuracy Word Accuracy
Rule-based 88.17% 80.98%

CART (Stop-5) 91.63% 86.03%
Decision Forest (DF) 92.86% 87.25%

Forest of ANN 93.18% 88.67%

Secondly we studied performances of forest-based techniques
and found that Decision Forest and ANN Forest always per-
forms better than their non-forest counterparts. This fact reflects
their immunity towards over-fitting and noisy data. We exper-
imented with different syllabic features like syllabic structure,
onset of syllable, Schwa position and number of syllables in
that word and we achieved better performance with these syl-
labic structures. Finally we tested non discriminative AANN
technique which could not perform well in comparison to dis-
criminative ones. To conclude, the paper shows that forest of
ANN approach performs best, among the selected approaches,
with accuracy of 93.18% for Hindi LTS rules.

8. References
[1] Dutoit T., “An Introduction to Text-To-Speech Synthesis.”,

Kluwer Academic Publishers, 1996.

[2] Choudhury, M., “Rule-Based Grapheme to Phoneme Mapping for
Hindi Speech Synthesis”, 90th Indian Science Congress of the In-
ternational Speech Communication Association (ISCA), Banga-
lore, 2003.

[3] Monojit Choudhury, Anupam Basu and Sudeshna Sarkar, “A
Diachronic Approach for Schwa Deletion in Indo Aryan Lan-
guages”, Proceedings of SIGPHON

[4] Anjan Banerjee, Monojit Choudhury, Sudeshna Sarkar and Anu-
pam Basu, “Learning Schwa Pronounceability Rules in Bengali
Compound Words using Decision Trees”,

[5] http://speech.iiit.ac.in/ speech/speechdemo.html, “ITrans-3 nota-
tion”.

[6] Brieman, L., “Classification and Regression Trees”, Chapman &
Hall/CRC, 1984.

[7] Thomas M. Mitchell, “Machine Learning”, McGraw-Hill Higher
Education, 1997.

[8] Yvon, F., “Self-learning techniques for grapheme-to-phoneme
conversion”, Proceeding of the 2nd Onomastica Research Collo-
quium, London, Nov, 1994.

[9] Black, A.W. and Lenzo, K. and Pagel, V., “Issues in Building Gen-
eral Letter to Sound Rules”, International Speech Communication
Association, 1998.

[10] Weijters, T. Thole, J., “Speech synthesis with artificial neural net-
works”, Neural Networks, 1993

[11] Mana, F. and Massimino, P. and Pacchiotti, A., “Using Machine
Learning Techniques for Grapheme to Phoneme Transcription”,

[12] B. Yegnanarayana, “Artificial Neural Networks”, New Delhi:
Prentice Hall of India, 1999.

[13] Tong, W. and Hong, H. and Fang, H. and Xie, Q. and Perkins, R.
“Decision forest: combining the predictions of multiple indepen-
dent decision tree models”, J. Chem. Inf. Comput. Sci, Volume
43, 2003

[14] Brieman, L., “Bagging predictors”, Journal of Machine Learning,
Volume 24, 1996.

[15] S. P. Kishore and B. Yegnanarayana “Speaker verification: Min-
imizing the channel effects using autoassociative neural network
models”, Proceedings of IEEE Int. Conf. Acoust., Speech, and
Signal Processing, (Istanbul), pp. 11011104, 2000.

