POS Tagging and Chunking using Decision Forests

Sathish Chandra Pammi
Language Technologies Research Center
IIIT, Hyderabad, India
sathishp@students.iiit.net

Abstract

This paper presents the building of POS
Tagger and Chunk Tagger using Decision
Forests and also focuses on the investi-
gation towards exploring different meth-
ods for parts-of-speech tagging of In-
dian languages using sub-words as units.
The two models POS Tagger and Chunk
Tagger were tested with 3 different In-
dian languages Hindi, Bengali, Telugu
and achieved the accuracies as 69.92%,
70.99%, 74.74% and 69.35%, 60.08%,
77.20% respectively.

1 Introduction

Annotated corpora serve as an important tool
for investigators of natural language processing,
speech recognition and other related areas. It
proves to be a basic building block for construct-
ing statistical models for automatic processing of
natural languages. For example in Prosody added
Speech Synthesis(Alan W Black et al., 1997) Parts
of speech sequenses are very important.

Today most of the taggers can be characterized
as Rule-based or statistical based. To distinguish
the tag ambiguity, Rule-based taggers(Eric Brill,
1992) use hand-written rules. Stochastic based
taggers use the probabilities of occurrences of
words for a particular tag. Since Indian languages
are morphologically rich in nature, developing
rule based taggers which is a cumbersome process.
But, stochastic taggers require large amount of an-
notated data to train upon.

Many POS Taggers use morphological analyzer
as a module in their tagger. But building morpho-
logical analyzer to a particular Indian language is
very difficult. So, we tried to capture similar in-

Kishore Prahallad
Language Technologies Institute
Carnegie Mellon University, USA
skishorel@cs.cmu.edu

formation in indirect way by splitting the word to
be tagged in to sub-words.

Part-of-speech (POS) tagging involves many
difficult problems, such as insufficient amounts of
training data, inherent POS ambiguities, and most
seriously, many types of unknown words which
are ubiquitous in any application and cause ma-
jor tagging failures in many cases. The investiga-
tion towards exploring various methods to resolve
these types of problems by entering to sub-word
units like syllable, phoneme and onset vowel coda
are presented in this paper.

The next section describes the properties of the
Indian Language Scripts. Section 3 will con-
centrate on the data base used for the POS tag-
ging. Section 4 deals with Feature Selection
of POS Tagging and Chunking. Section 5 ex-
plains about the Classification and Regression
Tree (CART)(Breiman et al., 1984), and its pa-
rameters. Section 6 details about the Decision
forest. Section 7 explains different experiments
conducted and their results of POS Tagging and
Chunking leading to conclusion at section 8 by
providing overall results.

2 Indian Language Scripts

Indian languages have essentially a common al-
phabet, though they use different forms to express.
A character in Indian language scripts is close to a
syllable and can be typically of the form: C*VC*,
where C and V are consonant and vowel respec-
tively. Indic languages are partially syllabic in na-
ture, and the inherent vowel is an important con-
cept.

The scripts of Indian language have originated
from the ancient Brahmi script, where basic units
are syllabic in nature. Syllable is typically in the
form C*VC*. We can again subdivide syllable

into onset, vowel and coda. In a syllable, ’V’ in
between the two C*’s is vowel, C*’s that are left
and right of the vowel are onset and coda respec-
tively.

For example, the following word written in
IT3 notation describes Sub-Word units of Indian
languages.

Word: /san:gharshha/
Syllables: /san:/, /gha/, /rshha/

Onset-Vowel-Coda of syllable /san:/ is /s/-/a/-
/m:/, /gha/ is /gh/-/a/-/#/ and /rshha/ is /rshh/-/a/-/#/

Phonemes: /s/, /a/, In:/, /gh/, /al, /t/, /shh/, /a/

All the Indian languages have a common pho-
netic base. It has been observed that in some In-
dian languages it is quite difficult to get good per-
formance with rule-based system. This is because
of the large number of exceptions for a particu-
lar rule. To handle this problem, statistical ap-
proaches such as Decision Trees are employed. In
this paper we tried to show how the performance
of an advanced machine learning concept, Deci-
sion Forest is applied to POS tagging.

3 Data Used for the Experiments

Manual annotated data for Hindi, Bengali and Tel-
ugu is available at (spsal, 2007). A limited num-
ber of training set around 20000 words for each
language is available.

Table 1: POS Tagging Database
‘ Hindi ‘ Bengali ‘ Telugu ‘

NW for training | 21446 | 20352 | 21393
NW for testing | 4925 5226 5194
Tags 25 27 24

NW - Total number of words
Tags - Number of unique tags

4 TFeature Selection

Many experiments were conducted on word level
as well as sub-word level with different possible
features. Basic experiments are conducted on 3-
levels of sub-words. They are 1) Syllable level
features, 2) phoneme level features and 3) onset,
vowel and coda level (OVC) features.

But we found that below given set of features of
sub-words significantly participated for POS Tag-

ging:

o First syllable, last two syllables and remain-
ing phonemes of present word (F1).

e First syllable, last two syllables of present
word, previous word and it’s last 2 syllables
and next word and it’s first syllable (F2).

e First 5 and last 5 Onset, vowel and coda
(OVC) of present word, last 2 OVC’s of pre-
vious word and first 2 OVC’s of next word
(F3).

o First syllable, last two syllables and their on-
sets of present word, Last 2 syllables and
their onsets of previous word and first sylla-
ble and its onset of next word (F4).

e Previous word and their last 2 syllables, next
word and its first syllable (F5).

For chunking we have used 2-tag scheme (Ak-
shay Singh et al., 2005). Features used for chunk-
ing are 2-level context of POS Tags. i.e. present,
previous, previous-previous, next and next-next
word POS Tags were used as features for chunk-
ing.

5 Classification and Regression Trees

Classification And Regression Tree is a decision-
tree procedure introduced in (Breiman et al., 1984)
. CART uses an exhaustive, recursive partitioning
routine to generate binary splits that divide each
parent node into two child nodes by posing a se-
ries of yes-no questions. CART searches for ques-
tions that split nodes into relatively homogenous
child nodes. As the tree evolves, the nodes be-
come increasingly more homogenous, identifying
segments. The basic CART building algorithm is
a greedy algorithm which chooses the locally best
discriminatory feature at each stage in the process.

5.1 Stop Parameter

The stop parameter specifies the minimum number
of samples necessary in the training set before a
question is hypothesized to distinguish the group.
Normally with smaller stop value the model may
become over-trained. The optional stop value may
differ for different datasets of different languages.

5.2 Predictee

In a given feature set, the feature that is to be pre-
dicted as the output, is termed as the predictee. By
default the first feature in the feature-set is taken as
the predictee, but we can always specify the pre-
dictee while giving the description of the data.

Some times CART is over-fit with training data.
Thus performance may reduce. While further ex-
ploring different techniques to improve the perfor-
mance of this module, we came across the decision
forest algorithm, which can avoid over-fitting with

bagging.

6 Decision Forests

A decision forest is a set of several decision trees
which is similar to Random forest(Breiman L,
2001). These trees can be formed by various meth-
ods (or by one method, but with various parame-
ters of work), by different sub-samples of observa-
tions over one and the same phenomenon, by using
different characteristics. Such many-sided consid-
eration of a problem, as a rule, gives the improve-
ment of quality of forecasting and a better under-
standing of laws of the researched phenomenon.
Let us consider a set of trees and an observation
x. Each tree gives a forecast for x. Using a vot-
ing method, a class attributed to observation X is a
class which is preffered by majority of trees. In the
regression analysis problem, the predicted value is
a mean of forecasts of all trees.

Decision tree forest models often have a degree
of accuracy that cannot be obtained using a large
single-tree model. It uses the ’out of bag’ data
rows for validation of the model. This provides an
independent test without requiring a separate data
set or holding back rows from the tree construc-
tion. The stochastic (randomization) element in
the decision tree forest algorithm makes it highly
resistant to over fitting.

The general decision forest while building the
tree employ randomness both in preparing the
datasets as well as in selection of the features. But
in the decision forest algorithm used here, we have
employed the concept of randomness only while
building the datasets.

While using the decision forest, the focus will
be on the following two things : a) Datasets, b)
Algorithm used for building the trees.

6.1 Preparing Datasets

The datasets are manipulated for employing the
decision tree concept. The underlying concept of
building datasets from a given training dataset is
as follows: Take a random sample of N vectors
from the data set by replacement. Some observa-
tions will be selected more than once, and others
will not be selected. About 2/3 of the rows will
be selected by the sampling. The remaining 1/3
of the rows are called the out of bag (OOB) rows.
A new random selection of rows is performed for
each tree constructed.

6.2 Bagging

Bagging (Bootsrap AGGregatING)(Breiman L,
1996) produces replications of the training set by
sampling with replacement. Each replication of
the training set has the same size as the original
set, but some examples can appear more than once
while others dont appear at all. Bagging should
only be used if the learning machine is unstable.
Bagging proves quite useful here Since decision
trees are one of such type. Bagging improves the
estimate if the learning algorithm is unstable and
reduces the variance of predictions without chang-
ing the bias

6.3 Building Forest

With each of the datasets thus created, a decision
tree is built. Here we have chosen the CART
(explained in the previous section) algorithm for
building the decision tree. After building the trees
for each dataset, the trees are then used with the
testdata set for predicting the output of each of
the vectors of the testset. Thus with the obtained
sets of results, the decision forest predicts the ex-
act output by a voting strategy.

6.4 Voting Strategy

In decision forest, the final output is chosen based
on voting strategy, that will weigh the most popu-
lar output from the set of outputs. Given the sev-
eral outputs, a weightage-by-count method is em-
ployed to assign weightage to each output. Then
the output with the highest weightage is recorded
as the final output.

7 Experiments

7.1 POS Tagging

Using bagging, several trees were constructed
with stop value 1. Each feature set described in

Section 4 builds their corresponding forest. By
using voting strategy forest annotates given data.
Table-2 shows results of Tagger using decision
forest.

Table 2: Performance of POS Tagging using De-
cision Forest (in %)
‘ Features ‘ Hindi ‘ Bengali ‘ Telugu ‘

F1 67.80 | 59.40 | 73.76
F2 6491 | 59.80 | 73.72
F3 63.47 | 54.31 75.81
F4 63.21 | 53.12 | 74.22
F5 61.33 | 51.70 | 71.63

Because CART is less immune to overfitting,
we used Decision Forest for POS Tagging. De-
cision Forest using sub-word features contributed
significantly to annotate data. At last Voting strat-
egy is applied to above model and input is a 5
featured set simultaneously. This strategy gets
the output of each feature set and chooses the re-
sult which occurs with the highest frequency. Fi-
nally we achieved performance 69.35%, 60.08%
and 77.20% for Hindi, Bengali and Telugu respec-
tively.

7.2 Chunking

In the feature set discussed in section 4 for chunck-
ing , the CART and the Decision Forest are giving
percentages as shown in the table-3.

Table 3: Performance of Chunking using CART
and Decision Forest (in %)

‘ Method ‘ Hindi ‘ Bengali ‘ Telugu
CART 69.11 | 69.46 73.04
Decision Forest | 69.92 | 70.99 74.74

8 Conclusion

Since only a small labeled training set is available
(around 20,000 words), sub-word unit based ap-
proach gives significantly good results. The two
models POS Tagger and Chunk Tagger were tested
with 3 different Indian languages Hindi, Bengali,
Telugu and achieved the accuracies as 69.92%,
70.99%, 74.74% and 69.35%, 60.08%, 77.20% re-
spectively.

References

Breiman L., J. Friedman, R. Olshen, and C. Stone
1984. Classification and Regression Trees,
Wadsworth and Brooks Pacific Grove CA.

Leo Breiman 1996. Bagging Predictors, Machine

Learning, 24:123-140

Breiman L 2001. Random Forests, Machine Learning,
45:5-15

Eric Brill 1992. A simple rule-based part of speech
tagger, Proceedings of the Third Annual Confer-
ence on Applied Natural Language Processing, ACL

Alan W Black and Paul Taylor 1997. Assigning Phrase
Breaks From Part-of-Speech Sequences, Proceed-
ings of the Eurospeech.

Akshay Singh, S M Bendre, Rajeev Sangal 2005.
HMM Based Chunker for Hindi, Proceedings of
International Joint Conference on Natural Language
Processing.

Daniel Jurafsky and James H. Martin 2000. Speech
and Language Processing, Prentice Hall PTR

http://shiva.iiit.ac.in/SPSAL2007/index.php 2007
Workshop on Shallow Parsing in South Asian Lan-
guages

